
Anaerobic oxidation of methane by sulfate in hypersaline
groundwater of the Dead Sea aquifer
N. AVRAHAMOV,1 G. ANTLER,2 Y . YECHIELI , 3 I . GAVRIELI ,3 S . B . JOYE,4 M. SAXTON,4

A. V . TURCHYN2 AND O. SIVAN1

1Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
2Department of Earth Sciences, University of Cambridge, Cambridge,UK
3The Geological Survey of Israel, Jerusalem, Israel
4Department of Marine Sciences, The University of Georgia, Athens, GA, USA

ABSTRACT

Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled

with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer.

Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS.

The groundwater samples were highly saline (up to 6300 mM chlorine), anoxic, and contained methane.

A mass balance calculation demonstrates that the very low d13CDIC in this groundwater is due to

anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen

isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and

16S amplicon sequencing were used to explore the microbial community present and were found to be

microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic

archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salin-

ity and the available methane and is substantially lower as salinity increases (2.5 mM sulfate removal at

3000 mM chlorine but only 0.5 mM sulfate removal at 6300 mM chlorine). Low overall sulfur isotope

fractionation observed (34e = 17 � 3.5&) hints at high rates of sulfate reduction, as has been previ-

ously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the

presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of

how microbial life is sustained under the challenging conditions of an extremely hypersaline environ-

ment.
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INTRODUCTION

During anaerobic organic matter oxidation, microbial res-

piration is coupled with the reduction in series of electron

acceptors that provide decreasing free energy yields. The

largest energy yield is associated with nitrate reduction

(denitrification), then manganese and iron reduction, fol-

lowed by sulfate reduction, and finally fermentation of

organic matter or the reduction of CO2 to methane via

methanogenesis (Froelich et al., 1979). Due to the high

concentration of sulfate in the ocean, dissimilatory bacterial

sulfate reduction (Eq. 1) is responsible for the majority of

organic matter oxidation in marine sediments (Kasten &

Jørgensen, 2000).

SO4
2� þ 2ðCH2OÞ ! H2S þ 2HCO3

� ð1Þ

When methane is available as the electron donor, micro-

organisms can oxidize it (methanotrophy), and in some

cases, sulfate is reduced primarily by coupling with anaero-

bic oxidation of methane (AOM) (e.g., Niew€ohner et al.,

1998; Boetius et al., 2000; Aharon, 2000; Sivan et al.,

2007), as shown in Eq. 2 (Hoehler et al., 1994):

CH4 þ SO4
2� ! HS� þ HCO3

� þ H2O ð2Þ

Sulfate-driven AOM consumes almost all the upward

fluxes of methane in marine sediments and prevents its

release to the atmosphere. This process typically involves
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microbial consortia of archaea and bacteria affiliated with

methanosarcina-type methanogens and sulfate-reducing

bacteria, respectively (Boetius et al., 2000). A common

view is that anaerobic methanotrophic archaea (ANME)

oxidize the methane while the bacterial partner uses the

resulting reducing equivalents to reduce sulfate (Thauer &

Shima, 2008; Basen et al., 2011). Recently, however,

AOM mediated solely by archaea was reported (Milucka

et al., 2012); whether this process is widespread in the nat-

ural environment is unknown. Sulfate-driven AOM has also

been reported in a variety of terrestrial habitats, including

terrestrial mud volcanoes (e.g., Alain et al., 2006), landfills

(Grossman et al., 2002), in the anoxic waters of a eutro-

phic freshwater lake (Eller et al., 2005), and in anoxic

coastal freshwater and brackish sediments (Segarra et al.,

2013). ANME sequences have also been reported from

diverse soils, aquifers, and oilfield production waters,

although their linkage to sulfate-driven AOM in such habi-

tats is unclear (Knittel & Boetius, 2009).

Anaerobic oxidation of methane seems uniquely suited

to extreme natural environments: AOM has been observed

in temperatures of up to 75 °C in the hydrothermal sedi-

ments of the Guaymas Basin (Holler et al., 2011), in CO2-

rich seep sediments with an in situ pH as low as 4 (Inagaki

et al., 2006a), in alkaline fluids of carbonate chimneys with

pH values of 9–11, and in diffuse vent fluids at tempera-

tures up to 70 °C (Brazelton et al., 2006). However, doc-

umentation of AOM in hypersaline environments is

limited. Thermodynamically, sulfate-driven AOM is not

expected in salt-stressed environments because of the extre-

mely low-energy yield and the high energy needed for the

osmotic adaptation to the surrounding medium (Oren,

2011). Still, sulfate-driven AOM has been observed in hy-

persaline marine cold seep sediments (Orcutt et al., 2005;

Lloyd et al., 2006; Maignien et al., 2013). However, the

occurrence of this process in continental hypersaline envi-

ronments has not been reported. Here, we provide the first

time geochemical evidence of AOM in the Dead Sea (DS)

aquifer, which expands our understanding of how micro-

bial life is sustained under challenging conditions of an

extreme hypersaline environment.

Traditional organoclastic bacterial sulfate reduction (not

associated with methane) is often observed in hypersaline

terrestrial systems (e.g., Canfield & Des Marais, 1991;

Brandt et al., 2001; Porter et al., 2007; Van der Wielen &

Heijs, 2007; Murray et al., 2012; Roychoudhury et al.,

2013). Evidence for bacterial sulfate reduction has also

been observed in the highly sulfate-depleted calcium chlo-

ride brines of the DS. Comparison of the isotopic compo-

sition of sulfate and sulfide from the lower anoxic water

layer during the DS meromictic stage, before the 1978

overturn (Steinhorn, 1985), pointed to bacterial sulfate

reduction as the source of the sulfide because this microbi-

ally mediated process selects for 32S over 34S (Nissenbaum

& Kaplan, 1976). Sulfur isotopes and ammonium concen-

trations in two groups of brine along the western coast of

the DS also indicate oxidation of the organic matter

through bacterial sulfate reduction (Gavrieli et al., 2001).

To date, no ANMEs have been identified in the DS

environment; however, the potential for methanogenesis

and AOM has been demonstrated. Microbial radiotracer

studies of methanogenesis in sediments from the DS

showed that methane is produced from methanol in sedi-

ment slurries (Marvin Di Pasquale et al., 1999). In a

recent study (Avrahamov et al., 2010), methane was found

in most hypersaline groundwaters, and from mass balance

calculations of the carbon isotopic composition (d13C) of

the dissolved inorganic carbon (DIC), it was hypothesized

that methanotrophy played an important role in this

groundwater system.

The isotopic composition of sulfate and DIC in ground-

water provides evidence for biogeochemical processes

involving methane and sulfate due to the significant isoto-

pic fractionations associated with their biological transfor-

mations. Depending on the extent of reaction, AOM

generates highly 13C-depleted DIC leaving 13C-enriched

residual methane. This fingerprinting is the result of bio-

logical fractionation during methane oxidation (e~0–10&,

Whitcar et al., 1986; Whiticar, 1999). An average e value

of 13 � 9& was presented by Alperin & Hoehler (2009)

and the initial highly depleted d13C value of the methane

itself, which is about -50& to -100& (Vienna Pee Dee

Belemnite—VPDB) (Alperin et al., 1988; Martens et al.,

1999). During bacterial sulfate reduction, a decrease of

dissolved sulfate concentration coupled with isotopic

enrichment of both 34S and 18O in the dissolved sulfate

(d34SSO4 and d18OSO4) is expected, because sulfate-reduc-

ing bacteria discriminate against the heavy isotope (e.g.,

Mizutani & Rafter, 1973; Fritz et al., 1989).

This study presents geochemical and microbial evidence

for sulfate-driven AOM in the aquatic, hypersaline ground-

water system along the DS shore. This system includes the

fresh-saline groundwater interface (FSI) from which the

extremely saline samples in the alluvial fan of Wadi Arugot

were taken (Fig. 1). We determined the sulfur and oxygen

isotope fractionations and the apparent net sulfate reduc-

tion rate and explored the factors controlling the extent of

sulfur isotope fractionation in this extreme environment.

Study site

The DS is a hypersaline terminal lake located in the deep-

est part of the DS Transform Fault. The salinity of the lake

is ~345 g TDS/l (6400 mM Cl�). It is currently supersatu-

rated with respect to gypsum (Reznik et al., 2011) and

halite (Reznik et al., 2009), and its brine inorganically pre-

cipitates aragonite (Barkan et al., 2001) and halite (Gavri-

eli, 1997). The DS brine has a calcium chloride
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composition (Na/Cl<1 and Ca/ (SO4
2�+HCO3

�1)>1),
which is characterized by a low sulfate concentration rela-

tive to its salinity (Table 1). It was postulated that the DS

brines are the result of seawater infiltration from the Medi-

terranean Sea in the Neogene (Neev & Emery, 1967; Zak,

1967), which underwent high evaporation and several

stages of rock–water interaction (Starinsky, 1974).

The DS surface level has been dropping during the past

50 years due to human activity, with rates reaching more

than 1 m year�1 in the last several years (Anati & Shasha,

1989; Lensky et al., 2005; Yechieli et al., 2010). This drop

in the DS water level has further concentrated the salts and

increased the salinity, causing massive precipitation of

halite from the water column to the lake bottom, and to

the development of sinkholes in the surrounding aquifer.

The DS aquifer is an ideal site to investigate sulfate-driven

AOM in a hypersaline environment, because of the high

ionic strength of the DS water (9 mol KgH2O
�1), the rel-

atively low sulfate concentrations (~4 mM in the DS) that

may therefore show large isotopic shifts, the anoxic condi-

tions of most of the hypersaline groundwater, and the

presence of methane (Avrahamov et al., 2010).

The hydrological system in the Dead Sea aquifer

Two main aquifers exist in the western part of the DS rift:

the limestone and dolomite layers of the Judea Group of

Upper Cretaceous age, and the Quaternary alluvial aquifer

(Fig. 2) (Arad & Michaeli, 1967; Yechieli et al., 1995).

This study focuses on the FSI in the alluvial aquifer with

the DS, which consists of clastic deltaic (gravel, sand, and

clay) and lacustrine (clay, aragonite, gypsum, and salt) sedi-

ments of the Lisan and Zeelim formations. Alternations

between gravel and clay create several subaquifers that dif-

fer in their groundwater level, temperature, and chemical

composition (Yechieli, 2006). The alluvial aquifer is generally

separated from the Cretaceous aquifer by the western

marginal faults of the DS rift, which sets the Cretaceous

limestone rocks of the Judea Group against the Quaternary

alluvial rocks. Due to the low precipitation and high evap-

oration rates in the DS area, only a small amount of water

penetrates directly to the alluvial aquifer from floods. The

main freshwater source of the alluvial aquifer is the Creta-

ceous aquifer from which water flows through the noted

fault zone. The Cretaceous aquifer freshwater emerges in

several springs along the western faults of the DS rift, such

as the Ein Gedi spring.

The groundwater flow in the DS alluvial aquifer is pre-

sented in a schematic hydrogeological cross section

(Fig. 2), showing that the groundwater in the upper phre-

atic aquifer has two opposite paths. Due to the hydraulic

gradient in the region, the general groundwater flow is

from the highlands from the west to the east. On the other

hand, beneath the FSI zone, there is saline water circula-

tion from the DS inland despite the fact that the water

level in the DS is decreasing (Kiro et al., 2008; Avrahamov

et al., 2010). In the FSI zone itself, the hypersaline

groundwater mixes with the relatively fresh groundwater,

generating continuous seaward outflow of saline water. In

general, there are three main water bodies in the DS aqui-

fer (Lewenberg, 2005; Kiro, 2007): (i) fresh groundwater

in the west, at the foot of the Judean desert mountain

(TDS>1 g L�1); (ii) groundwater with chemical character-

istics similar to that of the DS in the east (hereafter called

DS circulating groundwater); and (iii) unique brines which

are different from the DS brine in their chemical composi-

tion (Na/Cl, Mg/K, and Ca/Mg) and salinity in the west

(hereafter called western brine). In the first stage of

groundwater mixing, the fresh groundwater flows eastward

toward the western brine, causing dilution of the latter.

Later, the western brine flows toward the lake and mixes

with the DS water. It seems thus that at the Arugot alluvial

fan, there is no direct flow of freshwater above the brines

toward the DS (Kiro, 2007). The boundary between DS

circulating water and the two other water bodies (western

brine and fresh water) forms the FSI. The brine in the

lower subaquifer below the upper aquifer is somewhat dif-

ferent. This research focuses on the anoxic part of the FSI

zone in the upper aquifer. This is the more saline part of

the FSI (>1600 mM Cl�), where the two end members of

the hypersaline groundwaters are the western brine and the

DS water.

METHODS

Sampling and field procedure

Water samples were collected from nine boreholes drilled

along the Arugot alluvial fan next to the DS (Fig. 1).

Groundwater samples were collected with a submersible

Fig. 1 Location map of the Dead Sea, Wadi Arugot, and the research bore-

hole distribution.
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pump after three volumes of well water were removed. The

density was measured in the field using a Paar digital

DMA-35 density meter. Conductivity, pH, and tempera-

ture were also measured in the field using a portable mul-

tiparameters instrument (Multi 3500i, WTW, Weilheim,

Germany). Sulfide was precipitated in the field as ZnS by

adding 1–2 mL 1 M Zn-acetate to 1-L sampling bottles

prior to sampling. Due to the high ionic strength of the

DS, dissolved oxygen was measured in the field using a

modified Winkler titration method (APHA, American Pub-

lic Health Association, American Water Work association

& Pollution Control Federation, 1985; Nishri & Ben-Yaa-

kov, 1990). Samples for major ion concentrations were

collected in plastic bottles. Subsamples for total alkalinity

(TA), DIC, and carbon isotope analyses were immediately

filtered through 0.45-lm filters and transferred into 20-

mL pre-poisoned syringes (HgCl2 powder) to terminate

bacterial activity. For methane analyses, 5 mL subsamples

were transferred immediately to a vacutainer for headspace

measurements. For the isotopic analyses of sulfur and oxy-

gen of sulfate, sulfate was precipitated in the field from the

groundwater as BaSO4, using a saturated barium chloride

solution. Samples for molecular biological analyses were fil-

tered onto 0.2 lM Sterivex filters (EMD Millipore, Billeri-

ca, MA, USA), immediately frozen at (�20 °C), and

stored at �80 °C until DNA extraction.

Analytical methods

Na+, K+, Ca2+, Mg2+, Ba2+, and Sr2+ were analyzed using

inductively coupled plasma atomic emission spectroscopy

(ICP-AES). Cl� was measured by a potentiometric titra-

tion method, using silver and calomel electrodes with

AgNO3 as the titrant. The precision of the analysis of all

the major elements was �2%, except for sulfate, which is

described below. Total alkalinity was measured by titration,

with 0.01 N HCl as a titrant (Metrohm model 785, Heri-

sau, Switzerland). The analytical precision from duplicates

was 0.03 meq L�1. Sulfate concentrations were measured

using a Dionex DX500 high-pressure liquid chromatogra-

phy (HPLC) with an external error of 0.4–4.2% between

duplicates for samples (1r). About 0.2 mL of each

groundwater sample was transferred into a He-flushed vial

containing H3PO4 for the headspace measurements of

d13CDIC by conventional isotopic ratio mass spectrometer

(IRMS, DeltaV Advantage; Thermo, Waltham, MA, USA)

with a precision of �0.1&. DIC concentration was also

calculated from the IRMS results according to the peak

height and a calibration curve (by standard samples pre-

pared from NaHCO3 with known DIC concentration)

with an error of �0.2 mM.

Methane concentrations were measured by a gas chro-

matograph (GC, Thermo) equipped with a Shin Carbon-

packed column with precision of �2 lM. The d13CCH4 val-

ues were measured via the IRMS equipped with a PreCon

interface after oxidation to CO2. The precision of the mea-

surements was �0.5&, and the results are reported vs. the

PDB standard. Total sulfide concentration was measured

by titration with 5 mM thiosulfate, with an estimated error

of 14 lM. Ferrous iron was fixed immediately using a fer-

rozine solution, and the absorbance at 562 nm was mea-

sured on a spectrophotometer (Stookey, 1970);

concentrations were determined by comparison with a

standard curve, and the error was less than 7 lM. The sul-

fur and oxygen isotope composition of the sulfate was ana-

lyzed at the University of Cambridge. Sulfate was

precipitated as barite and pyrolyzed at 1450 °C in a tem-

perature conversion element analyzer (TC/EA), and the

resulting carbon monoxide (CO) was measured by contin-

uous-flow GS-IRMS (Delta V Plus) for its d18OSO4. For

the d34SSO4 analysis, the barite was combusted at 1030 °C
in a flash element analyzer (EA), and the resulting sulfur

dioxide (SO2) was measured by continuous-flow GS-IRMS

(Thermo, Delta V Plus). Samples for d18OSO4 were run in

replicate, and the standard deviation of these replicate

analyses was used as the external reported error (~0.5 &).

The d18OSO4 values are reported vs. VSMOW and cor-

rected for two barite standards of known d18OSO4 that

Fig. 2 Schematic hydrogeological cross

section through the two main aquifers in the

western part of the Dead Sea area (after Kiro,

2007), showing the groundwater flow

directions and the three main water bodies

discussed in this work; the fresh groundwater,

the DS circulating groundwater in the east

and the western brine. In the FSI zone, there

is a mixture between the DS water to the

western brine.
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were run at the beginning and end of each set of samples

(NBS 127 d18OSO4 = 8.6& and EM barite

d18OSO4 = 15&). d34SSO4 results are reported vs. the Can-

yon Diablo Troilite (VCDT), and the error was determined

using the standard deviation of the standard (NBS 127) at

the beginning and the end of each run (~0.4&). The

d34SSO4 was also corrected to two standards of known sul-

fur isotope composition, NBS 127 (20.3&) and EM barite

(12&).

DNA extraction

Groundwater samples for DNA sequence analysis were

extracted via phenol–chloroform DNA extraction (Sam-

brook & Russell, 2001). DNA extraction was repeated four

times on each filter and pooled prior to purification. Sam-

ples were purified using the Genomic DNA Clean and

Concentrator Kit (Zymo Research Co., Irvine, CA, USA).

16S amplicon sequencing and analysis

16s rRNA gene hypervariable region V4-V5 from the bac-

terial and archaeal communities was sequenced on an Illu-

mina MiSeq sequencer (Illumina Inc. San Diego, CA,

USA) at the Josephine Paul Bay Center, Marine Biological

Laboratory (MBL) in Woods Hole, Massachusetts, USA.

Sample preparation, including primers used, PCR condi-

tions, and cycling conditions are described at length on the

MBL Web site (http://vamps.mbl.edu/resources/primers.

php). Sequence QC and analyses were performed through

the Visualization and Analysis of Microbial Population

Structure (VAMPS) Web site (http://vamps.mbl.edu/

index.php) and as described by Huse et al. (2007) and

Sogin et al. (2006). Briefly, sequences of low quality,

including sequences less than 50 bp in length, those with

ambiguous taxonomic classifications, and those that did

not include a forward primer sequence, were removed.

Sequences were then screened for the presence of chimeric

sequences using UCHIME (Edgar et al., 2011). Taxo-

nomic designations were made using GAST (Global Align-

ment for Sequence Taxonomy) as described by Sogin et al.

(2006). In this process, sequences are BLAST (Altschul

et al., 1990) searched against the SILVA SSU database

(Quast et al., 2013) and MUSCLE aligned (Edgar, 2004)

to the top 100 BLAST hits. Consensus taxonomy is then

determined and applied to each sequence. Sequences were

assigned to operational taxonomic units (OTUs) at a 3%

dissimilarity cutoff in QIIME 1.7.0 (Caporaso et al., 2010)

using UCLUST (Edgar, 2010).

QIIME was also used to perform OTU rarefaction and

richness analyses. All sequences are available via the VAMPS

webpage http://vamps.mbl.edu/ listed as SBJ_BME_

Av4v5 and SBJ_BME_Av4v5. The sequences have been sub-

mitted to the NCBI short-read sequence archive.

RESULTS

Full chemical and isotope data are presented in Table 1.

Based on a plot of Na+ vs. Cl�, the collected water samples

were mixtures of the fresh groundwater (represented by

the fresh spring water) and DS brines (best represented by

the 1980s DS water, Fig. 3A). However, as the sulfate

concentration of the DS brine is low, another end member

can be distinguished—the western brine, as presented in

Fig. 3B and described hereafter. The continuous drop in

the DS level since the 1970s has been accompanied by a

change in the chemical composition of the DS. Due to

halite precipitation and mixing with end brines released

from the DS potash industries, the Na/Cl ratio in the DS

has decreased from 0.30 to 0.21, while Mg/K ratio

increased from 9 to 9.8 (Gavrieli, 1997; Reznik et al.,

2009). As the chloride concentration in the DS is signifi-

cantly higher than the sodium concentration (6300 mM vs.

1400 mM, respectively), during halite precipitation, sodium

concentration decreases, whereas chloride concentration

essentially remains constant. The behavior of these ions

(sodium and chloride) in the aquifer, which is under-satu-

rated with respect to halite, is expected to be conservative.

A

B

Fig. 3 (A) Na+ and (B) SO4
2� vs. Cl- concentrations. (A) points to simple

mixing between the two end members; the DS of the 80s and the freshwa-

ter spring (DS data from Gavrieli, 1997; Reznik et al., 2009). The error is

smaller than the symbols. (B) shows a nonlinear relationship between

SO4
2� and Cl� in groundwater samples between the two end members,

the DS water and the western brine. The theoretical mixing line is exhibited

by a solid line. The dashed line is the predicted SO4
2� concentration at sat-

uration with gypsum (Ωgyp = 1) calculated from PhreeqC (Parkhurst & Ap-

pelo, 2007). Most of the groundwater samples fall below the two lines,

suggesting partial removal of SO4
2� by BSR.
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On the other hand, the carbon system, which was studied

mainly through measurements of DIC, d13CDIC, and alka-

linity, exhibits non-conservative behavior (Avrahamov

et al., 2010).

Dissolved oxygen (DO)

Theoretical calculations of oxygen solubility in hypersaline

solutions such as the DS brine are difficult due to the

uncertainty in the formulation of the interactions of the

electrolytes at high ionic strength (Nishri & Ben-Yaakov,

1990). Dissolved oxygen concentration in the DS, mea-

sured using the modified Winkler titration method, was

43 � 2 lM, which is comparable to previous measurements

(45 lM, Nishri & Ben-Yaakov, 1990). The dissolved oxy-

gen concentrations of the groundwater in the alluvial aqui-

fer varied from saturation to below detection. In general,

most of the low salinity groundwater (<1600 mM Cl�) was
oxic, whereas the hypersaline groundwater was character-

ized by low (<5 lM) to below detection levels of oxygen.

Dissolved sulfate and sulfide

The dissolved sulfate concentration of the DS at the time

of the study was 4.1 mM. Even at this low concentration

(15% of seawater concentrations), the DS is oversaturated

with respect to gypsum (Reznik et al., 2009). The DS

water percolating into the alluvial aquifer was further

depleted in sulfate relative to the DS water, with sulfate

concentrations being in the range of 2.5–2.9 mM. The

highest sulfate concentration, 31 mM, was found in the

sample of lowest chloride concentration within the group

of the higher salinity (Fig. 3B). In general, the sulfate con-

centration of this group of groundwater in the FSI zone

decreases with increasing salinity and exhibits depletion

from both the expected mixing values between the DS and

the western brine (represented by borehole EG22/19.7

values, Table 1), as well as from the predicted sulfate con-

centration at saturation with respect to gypsum (Ωgy = 1,

Fig. 3B). Exceptions to this were the samples from the

lower subaquifer that are distinguished by their ion ratios

and salinity and therefore were defined as a separate water

body (Fig. 3B).

The expected sulfate concentration of the groundwater

samples in the FSI zone, prior to any geochemical reaction,

was calculated by the mixing fraction of the DS end mem-

ber (fDS) according to the following equation:

fDS ¼ Clsample � Clwb
ClDS � Clwb

ð3Þ

where Clsample is the chlorine concentration in the mea-

sured sample, and Clwb and ClDS are the chlorine concen-

trations in the two saline end members the western brine

(wb) and the DS, respectively. Due to halite precipitation

in some of the groundwater samples, the mixing fractions

for them (EG22/22 and EG22/25.3) were calculated

using the magnesium concentration instead of chloride

concentration. The calculated sulfate concentrations in the

groundwater were then compared with the expected sulfate

concentration at gypsum saturation (Ωgy = 1). The latter

were calculated using the PhreeqC code (Parkhurst &

Appelo, 2007) and its Pitzer database for high ionic

strength solutions. The code ‘precipitates’ gypsum from

the oversaturated brine until the brine attains saturation

with respect to gypsum.

The aqueous geochemistry of the groundwater samples

from the lower subaquifer indicates that these samples have

some unique brine component, in addition to the western

brine. As there are not enough data on the lower subaquif-

er, the pre-reaction sulfate and d34SSO4 values cannot be

calculated, and these samples were excluded from the iso-

topic mass balance calculations.

Most of the groundwater samples contained low concen-

trations of sulfide (Table 1), but the low resolution of the

sulfide measurements did not permit identification of a

trend. However, sulfide concentrations in the western

brine and in the lower subaquifer samples differed signifi-

cantly, being about 130 and 1940 lM, respectively.

Methane

Methane was found in most of the hypersaline groundwa-

ter samples at concentrations of up to 82 lΜ. The

d13CCH4 ranged between �36 and �44& (Table 1).

Fe2+

The concentrations of ferrous iron in some groundwater

samples were measured and show depletion upon entrance

to the aquifer (1.87 nM in the DS compared with 0.33 nM

in groundwater 5 m from the DS) and then an increase to

19.9 nM at a distance of 80 m into the aquifer (Table 1).

Sulfur and oxygen isotope compositions in sulfate

The isotopic composition of sulfate in the groundwater

ranged from 11.7& to 18.1& for the d18OSO4 (&
VSMOW) and from 14.1& to 23.9& for d34SSO4

(& VCDT). Most of the groundwater samples were

isotopically heavier than those of the modern DS

(d34SSO4 = 15.9& and d18OSO4 = 13.7&). An inverse cor-

relation was observed between the sulfur and oxygen isoto-

pic composition of sulfate and the sulfate concentration for

most of the samples (Fig. 4), which suggests bacterial sul-

fate reduction, whereby the remaining sulfate progressively

becomes enriched in the heavy sulfur and oxygen isotope

as sulfate reduction proceeds. Two of the groundwater
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samples deviate from the general trend. These samples

were found very near the DS shoreline and have a similar

chemical composition to that of the DS and thus probably

represent intrusion of the DS brine into the coastal aquifer

with only minor reaction (as discussed below).

Microbial results

To examine the microbial community potentially involved

in AOM and bacterial sulfate reduction in the DS aquifer,

16s rRNA gene amplicons were sequenced from the archa-

eal and bacterial communities present at EG 19-50 m and

EG 20-55 m (Table 2, Fig. 5). Between 22 226 and

44 449 unique sequences were obtained in the four

libraries with Good’s coverage estimate over 99% in each

library (Table 2). Bacterial libraries at both sites were more

diverse than the archaeal counterparts, with more than 800

OTUs in both bacterial libraries and 309 or fewer in both

archaeal libraries (Table 2). Shannon index values from the

libraries agree with the OTU results (Table 2).

DISCUSSION

DIC and d13CDIC evidence for methane oxidation

It has previously been suggested that methane oxidation

occurs in the DS alluvial aquifer (Avrahamov et al., 2010),

based on methane concentration and DIC–carbon isotope

mass balance. This mass balance showed that the low

d13CDIC in the circulating DS groundwater and in the FSI

zone, which only differ slightly in their DIC concentra-

tions, was likely due to AOM. Here, we augment these

data with oxygen concentration measurements, additional

measurements of methane and sulfate concentrations, and

stable isotopes of the sulfate in the anoxic aquifer. These

measurements support the conclusion that AOM occurs in

the DS alluvial aquifer and that it takes place at significant

rates.

Mass balance calculations were performed to understand

the evolution of isotopic signatures in the DS reservoir.

Using these calculations, we explored four scenarios

(Table 3). The ultimate objective was to track a parcel of

DS water with known DIC concentration and elucidate

the main processes affecting the DIC and d13CDIC values

when the DS water enters the aquifer. The mass balance

calculation assumes that the initial DIC concentration and

d13CDIC value of the hypersaline groundwater were similar

to that of the current DS (i.e., 0.98 mM and 2.8&, respec-

tively). Limited dilution of the DS groundwater by the

freshwater coming from the west that flows on top of the

circulating DS water does exist, but it has no significant

effect on the DIC and d13CDIC of the DS groundwater as

the DS fraction is overwhelming. (according to mixing

fraction calculation, the mixing fraction of the DS end

member is 0.97–0.99.) The excess in DIC in the ground-

water is then attributed to either organic matter oxidation

(d13COM ~ �25&) or methane oxidation (d13CCH4 ~
�40&), assuming no carbon isotope fractionation in the

oxidation process. The four examples in Table 3 suggest

that methane oxidation is the main source of the isotopi-

cally depleted DIC in two of them. The first two samples

(EG15/19 and EG16/11 sites) have DIC lower than that

of the DS with significantly lighter d13CDIC, implying that

Fig. 4 (A) d34SSO4 and (B) d18OSO4 vs. sulfate concentrations. The two

samples with values close to those of the DS are located only a few meters

from the shoreline and are probably DS brines that only recently penetrated

into the coastal area. The analytical error is smaller than the symbol.

Table 2 The abundance of unique sequences, OTUs grouped at 97% simi-

larity and richness, diversity and coverage statistics calculated using the

OTUs

Unique

sequences OUT

Chao1

richness

Shannon

index

Good’s

coverage

EG19-50 m

Bacteria 44449 858 929.2 7.6 99.5%

Archaea 29484 208 405.2 6.25 99.8%

EG20-55 m

Bacteria 22226 816 1059.2 7.33 99.1%

Archaea 30906 309 720.8 5.59 99.4%

© 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

518 N. AVRAHAMOV et al.



some of the carbon of the DS solution was lost while

penetrating into the aquifer while another source was

added. These two samples with the missing DIC empha-

size the low d13C of the substrate involved, as precipitation

of carbonate minerals is expected to enrich the residual

DIC with the heavy isotopes (+2.5&, Mook, 1980). How-

ever, in the last two samples (EG20/55 and EG22/25

sites), if the excess DIC was derived solely from AOM, the

d13CDIC would have been lighter than that measured.

Thus, it seems that the carbon in these samples originated

from a combination of both methane and organic matter

oxidation.

The source of the methane could be a deep thermogenic

one, as suggested for the hydrocarbon gases in the DS rift

A

B

C

Fig. 5 (A) Bacterial taxon as a percentage of total bacterial taxon. Taxons are resolved at class level. (B) Archaeal taxon shown as a percentage of total

archaeal taxon. Taxons are resolved at class level (C) Deltaproteobacterial taxon as a percentage of total bacterial taxon. Taxons are resolved at family level.
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(Gvirtzman & Stanislavsky, 2000) or a deep biogenic

source. The fact that the d13CCH4 is not overwhelmingly
12C rich may support the thermogenic source; however,

we cannot rule out a biogenic source based on C isotopes

alone. Methanogenesis is not likely to occur in situ at the

depth of the groundwater as evident by the light d13CDIC

values and the presence of sulfate (minimal value of

2 mM), unless some alternative non-competitive substrate

such as methanol or methylamine (not measured) is

involved (Oremland & Polcin, 1982; Marvin Di Pasquale

et al., 1999).

SO4 and d34S

Sulfate concentrations along the groundwater flow path

reflect complex and multiple processes. Although the DS

salinity is mainly preserved in the circulating DS ground-

water, the sulfate concentration is lower in this hypersaline

groundwater compared with the DS water (2.9 mM vs.

4 mM, respectively). As the DS water is oversaturated with

respect to gypsum (Ωgyp = 1.4), it is reasonable to assume

that gypsum precipitation accounts for some of these

decreases. Maximum sulfate removal through precipitation

can be determined from the difference in concentration

between the expected sulfate due to mixing and sulfate

concentration at saturation. Indeed, 5 m inland from the

shore, the saturation state for gypsum (Ωgyp) has decreased

to between 0.9 and 1.0. As the DS groundwater continues

circulating, the Ωgyp drops to 0.6 (80 m from the lake,

EG20/55 m), suggesting an additional sink for sulfate or

calcium. The additional sink can be determined from the

difference between the sulfate concentrations at saturation

and the measured concentration. The d34SSO4 measured in

the aqueous sulfate at EG20/55 m is 21.9&, which is iso-

topically heavier (34S rich) compared with the original DS

brine (15&), suggesting that 32S was removed from the

circulating sulfate. While not definitive, this is very sugges-

tive of microbially mediated sulfate reduction occurring in

the aquifer and the subsequent removal of the sulfide as

FeS phases.

In the FSI zone (1200–6200 Cl� mM), the sulfate con-

centrations are higher (up to 31 mM) compared with the

circulated DS groundwater, and sulfate concentrations

decrease with increasing salinity (Fig. 3B). Due to the

changes in the lake’s water level, these data suggest that

the extra sulfate source is gypsum dissolution by subsatu-

rated groundwater within the alluvial aquifer that precipi-

tated from the DS in the past, when lake level was higher

(e.g., Neev & Hall, 1979). It should be noted that then at

the Holocene period, d34SSO4 value was close to the pres-

ent DS value (Gavrieli et al., 2001). The Ωgyp of the

groundwater in the FSI zone ranges from 0.7 to 1.0; the

d34SSO4 (18.8-21.4&) is also enriched in 34S, suggesting

bacterial sulfate reduction.

Pre-reaction sulfate concentration

To estimate the extent of bacterial sulfate reduction and

evaluate its sulfur isotope fractionation factor, the initial

sulfate concentration must be known and the water sources

must be traced. According to the end members described

in the hydrological background, most of the groundwater

in the FSI zone is a mixture of the western brine (repre-

sented by EG22/19.7) and the DS water in the east.

Therefore, the expected mixing value prior to geochemical

reactions can be calculated, as previously demonstrated.

The two end member water bodies are supersaturated or

saturated with respect to gypsum (Ωgy = 1.4 and 1.0, for

the DS and the western brine, respectively), but the mix-

tures measured from the boreholes are not saturated

(Ωgy<1, Table 1). Although gypsum has low precipitation

kinetics in the DS brine, precipitation will be promoted

when crystallization seeds are available (Reznik et al.,

2009), as expected within the alluvial aquifer, and thus, it

is reasonable to assume that gypsum precipitation proceeds

before biochemical reaction. According to this, the first

depletion in sulfate (Fig. 2B) from the expected mixing

values at saturation state would be due to gypsum precipi-

tation, while the second depletion would be due to bacte-

rial sulfate reduction. The sulfate concentrations at

saturation (Ωgy = 1) were calculated with the PhreeqC

code (Parkhurst & Appelo, 2007), using the Pitzer data-

base for high ionic strength solutions. Precipitation of gyp-

sum during the mixing process explains some of the

change in the sulfate concentrations of the DS circulating

groundwater but not the isotopic variations, as sulfur iso-

tope fractionation between dissolved sulfate and the pre-

cipitated gypsum is negligible (Worden et al., 1997). As

Table 3 Estimation of the DIC source (organic matter oxidation (OM) or methane oxidation) in DS circulating groundwater

Sample

Measured

DIC (mM)

Initial DS

DIC (mM)

Surplus

DIC (mM)

Initial DS

d13CDIC (&)

Expected d13CDIC following

OM oxidation (&)

Expected d13CDIC following

CH4 oxidation (&) Measured d13CDIC (&)

EG15/19* 0.60 0.98 �0.38 2.8 – – �15.4

EG16/11* 0.57 0.98 �0.41 2.8 – – �10.2

EG20/55* 1.87 0.98 0.89 2.8 �10.4 �17.6 �17.0

EG22/25* 1.80 0.98 0.82 2.8 �9.9 �16.7 �14.1

*After Avrahamov et al. (2010).
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discussed above, the mixed water at the FSI zone main-

tains higher sulfate concentrations due to gypsum dissolu-

tion in the Holocene alluvial aquifer, where this gypsum

has a d34SSO4 value close to that of the present DS (Gavri-

eli et al., 2001). Confirmation of this gypsum dissolution

hypothesis can also be found in the oxygen isotope com-

position of the sulfate; oxygen isotope fractionation

between sulfate and gypsum is around +3.6& (Lu et al.,

2001). This is reflected in the heavier d18OSO4 of the wes-

tern brine end member (d18OSO4 = 18.1&), where sulfate

concentrations are higher due to gypsum dissolution com-

pared with d18OSO4 of the DS �13.6&. Therefore, it is

reasonable to assume that the main process responsible for

this sulfate depletion and sulfur isotopic variations is bacte-

rial sulfate reduction and subsequent sulfide precipitation.

Given the above, the predicted sulfate concentrations at

Ωgy = 1 were compared with the measured value to esti-

mate the amount of sulfate that was removed by bacterial

sulfate reduction (Fig. 3B).

Apparent net BSR and the environmental conditions

Estimating sulfate reduction rates under aquifer conditions

is not trivial. Processes such as advection, dispersion, and

adsorption can lower sulfate concentration. However, a

rough estimation of apparent net sulfate reduction can be

achieved by subtracting measured sulfate values from the

initial sulfate concentration. Figure 6 shows the sulfate,

sulfur, and oxygen isotope compositions as a function of

the apparent BSR reaction progress (pre-reaction value

minus the measured value). Both the d34SSO4 and d18OSO4

show an increase with the progressive sulfate reduction, as

expected from the heavy-isotope enrichment in the residual

sulfate.

It is generally accepted that sulfate concentrations do

not modify sulfate reduction rates unless the concentration

is less than 1 mM, or even 200 lM (Martens & Berner,

1977; Jørgensen, 1981; Boudreau & Westrich, 1984).

Most of the groundwater samples considered here contain

more than 1 mM sulfate, indicating that sulfate concentra-

tion is not a primary controlling factor for sulfur isotope

fractionation during sulfate reduction.

Besides sulfate concentrations, the observed differences

in the apparent bacterial sulfate reduction between the

samples may be attributed to temperature, pressure, and

the amount of reactive organic carbon in the sediment and

the extent to which it can be metabolized (Boudreau &

Westrich, 1984 and references therein). In this study, all

the samples are from the shallow aquifer, so temperature

and hydrostatic pressure effects are irrelevant.

Previous studies have shown that the amount and reac-

tivity of the organic carbon in sediments are the two most

important factors controlling the rate of bacterial sulfate

reduction (Goldhaber & Kaplan, 1975; Berner, 1978;

Jørgensen, 1981; Westrich, 1983). Of these two variables,

the reactivity of the organic carbon is considered to be

more important (Westrich, 1983). In this case, the organic

carbon available for bacterial sulfate reduction is mostly

methane. While it is difficult to oxidize methane, under

certain situations, methane can be more available to the

sulfate-reducing bacteria than organic matter even though

thermodynamically sulfate reduction coupled with methane

is less favorable (Sivan et al., 2011 and references therein).

The low concentrations of methane suggest that it may

limit bacterial sulfate reduction in the groundwater, as

indicated by the observed relationship between methane

concentration and the apparent net rate bacterial sulfate

reduction (Fig. 7A). The increase in the methane concen-

trations with the flow direction supports an increased net

rate of sulfate reduction. We therefore suggest that bacte-

rial sulfate reduction mainly occurs via AOM, although we

cannot rule out organoclastic sulfate reduction entirely.

Figure 7B shows an inverse correlation between salinity

and AOM (R2 = 0.78). The salinity effect is not clear as

there is also a correlation between methane and salinity.

However, other studies have shown that hypersaline envi-

ronments inhibit AOM (Maignien et al., 2013; Joye et al.,

2009). In brine sediments of Mercator Marine mud volca-

noes, AOM seems to be partially inhibited by hypersaline

A

B

Fig. 6 (A) 34SSO4 and (B) 18OSO4 vs. apparent net BSR. The pre-reaction

sulfate concentration was determined from the mixing fraction and chemi-

cal equilibrium to gypsum as calculated from the Phreeqc model.
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conditions (Maignien et al., 2013). AOM appears to be

inhibited at high salinity while bacterial sulfate reduction is

not inhibited. However, no significant difference in the

enrichment factor, 34e, in hypersaline environments has

been demonstrated (Habicht & Canfield, 1997).

Sulfur and oxygen isotope fractionations

The observed inverse relationship between dissolved sulfate

and d34SSO4 values (Fig. 4A) in the hypersaline groundwa-

ter fits a Rayleigh distillation of 32S during sulfate reduc-

tion and may be a function of the methane concentrations

or other limiting parameters (e.g., dissolved organic carbon

concentration). The fractionation factors (a) of sulfur dur-

ing sulfate reduction can be derived from the Rayleigh

equation for a closed system, based on measurements of

the isotope ratios and sulfate concentrations (Broecker &

Oversby, 1971):

Rt=R0 ¼ Nt=N0ð Þða�1Þ ð4Þ

where Rt and R0 are the measured isotope ratios of sulfate

at time t and at the initiation of sulfate reduction, respec-

tively; a is the fractionation factor for S; (Nt/N0) is the

fraction of sulfate (f) remaining in the groundwater at any

given time. Equation (4) can be rewritten as follows (Aha-

ron, 1985):

Dd ¼ dt � do ¼ 103 ða� 1Þ ln ðf Þ ð5Þ

where dt = d34S is the value of the residual sulfate fraction

and d0 = d34S is the value of the initial sulfate before

microbial sulfate reduction commenced (according to mix-

ing and chemical equilibrium with gypsum). 103∙(a-1) is

also known as the enrichment factor (e) in permil, which is

the preference of 32S over 34S during bacterial sulfate

reduction in the given natural conditions.

Several assumptions related to the origin of the ground-

water can be used to constrain a closed system. The trend

of increasing d34SSO4 values in the DS circulating ground-

water along the flow path inland, while preserving the

salinity in this groundwater, suggests a more advanced

reduction stage along the Rayleigh distillation path, pro-

vided that the closed systems were maintained and that the

initial isotopic compositions were similar. However, in the

FSI zone, the two end members of the mixed brines have

the same isotopic value (15.9& in the DS and 15.8& in

the western brine). In general, in a closed system, sulfides

accumulate. However, it is possible that much of the pro-

duced sulfide escaped from the systems through degassing

(as hinted at by the low pH of most of the groundwater

samples compared to that in the two end members—

Table 1) or by its precipitation as metal sulfide. We mea-

sured a decrease in ferrous iron concentrations that sug-

gests that metal sulfides may be precipitated along the flow

path.

In a plot of Dd vs. ln(f), the slope represents the enrich-

ment factor e. In practice, the ln(f) member is actually the

natural log of the apparent net bacterial sulfate reduction

as calculated above and as presented in Fig. 4. The enrich-

ment factor of sulfur (34e) for the groundwater samples

was found to be 17 � 3.5& (Fig. 8). Sulfur isotope

A

B

Fig. 7 Methane (A) and Cl� (B) concentrations vs. calculated apparent net

BSR. The good correlation between the methane and salinity to the appar-

ent net BSR suggests that methane and salinity might limit BSR coupled

with AOM.

Fig. 8 Sulfur isotope enrichment relative to the pre-reaction value vs. the

residual sulfate fraction left in the groundwater after bacterial sulfate reduc-

tion (eq. 5). The sulfur isotope enrichment factor (34e) is the slope of this

relationship.
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fractionation during bacterial sulfate reduction is a function

of various environmental factors. The 34e value calculated

here is lower than the upper limit of sulfur isotope fractio-

nations found to be between 0 and 72& in the natural

environment (Wortmann et al., 2001; Brunner & Bernas-

coni, 2005; Canfield, 2001; Sim et al., 2011). Small sulfur

isotope fractionation (17 � 3.5&) may occur under condi-

tions of limited sulfate supply and/or high sulfate reduc-

tion rates (e.g., Canfield et al., 2006; Stam et al., 2011;

Aharon & Fu, 2000). Given that the sulfate concentrations

are high (as discussed above), we suggest that the small

sulfur isotope fractionation may result from a high rate of

bacterial sulfate reduction, which involves less re-oxidation

of sulfur intermediates (Rees, 1973), as has also been con-

cluded from both experimental data and theoretical work

(e.g., Harrison & Thode, 1958; Kaplan & Rittenberg,

1964; Rees, 1973; Canfield et al., 2006; Brunner &

Bernasconi, 2005; Sim et al., 2011). To better understand

the effect of the substrate and salinity on the fractionation

factor, Table 4 presents sulfur isotope fractionation data

from different locations classified by their reaction type

(organoclastic sulfate reduction vs. sulfate reduction by

AOM) and salinity conditions (hypersaline or seawater). As

several factors affect bacterial sulfate reduction, a reliable

comparison between different sites is difficult and should

be taken with caution.

Bacterial sulfate reduction has been documented in hy-

persaline water of organic rich sediments in Solar Lake in

Egypt with a salinity range similar to that of the DS aqui-

fer. In that case, the reported 34e was ~20& (Habicht &

Canfield, 1997). In cold seeps in the Gulf of Mexico, the

sulfur isotope fractionation factor for bacterial sulfate

reduction was 18& (Aharon & Fu, 2000) compared with

8.6& for bacterial sulfate reduction coupled with AOM at

the same site.

The low 34e of the AOM in hypersaline environments

compares with the 34e of bacterial sulfate reduction that

may be controlled by the electron donor. As the molecule

of methane is smaller and considerably simpler than that of

refractory crude oil, some micro-organisms prefer methane

over more complex organic matter (Aharon & Fu, 2000),

even though thermodynamically it is less energetically

favorable as an electron donor (Devol & Ahmed, 1981;

Aharon & Fu, 2000). However, higher sulfate reduction

rates at the methane-rich site may result from the higher

methane availability, making it favorable over the less

abundant organic matter. One of these two reasons could

explain the current low 34e compared with Gavrieli et al.’s

(2001) results, which calculated a higher sulfur isotope

fractionation factor (30&).

Besides sulfur isotopes, the oxygen isotopic composition

of the residual sulfate contributes valuable information for

understanding patterns and regulation of bacterial sulfate

reduction (e.g., Fritz et al., 1989; B€ottcher et al., 1998;

Brunner et al., 2005; Wortmann et al., 2007; Turchyn

et al., 2006; Antler et al., 2013). The partitioning of oxy-

gen isotopes in the residual sulfate during bacterial sulfate

reduction remains controversial. In the recent literature,

two different mechanisms are discussed. The first hypothe-

sis suggests the dominance of a kinetic enrichment of the

heavy oxygen isotope in the residual sulfate over the pref-

erential reduction of 16O-bearing sulfate (e.g., Mitzutani

& Rafter, 1969; Aharon & Fu, 2003; Mandernack et al.,

2003). On the other hand, the second hypothesis favors

the idea of an isotopic equilibration of the oxygen in the

sulfate with ambient water. However, the timescale for

abiotic oxygen isotope exchange between water and sulfate

is very slow (20–60 million years; Lloyd, 1968; Chiba &

Sakai, 1985), leading to the conclusion that oxygen iso-

tope equilibrium is achieved via sulfur compounds gener-

ated intracellularly as intermediates during bacterial sulfate

reduction (e.g., Mizutani & Rafter, 1973; Fritz et al.,

1989; Brunner et al., 2005; Wortmann et al., 2007).

According to this, while the sulfur isotope composition

Table 4 Sulfur isotope fractionations by reaction type and salinity conditions in this study and previous studies

Location Sediment Type

Isotope Fractionation

Enrichment Factor, 34e (&) References

Sulfate reduction coupled with anaerobic organic matter oxidation

Hypersaline condition

Solar Lake, Egypt Microbial mats 20 (1)

Mono Lake, California Basaltic sediment 5–21, mean value 12 (2)

Flow-through reactor Brackish estuarine sediments, 20 °C Mean value 17 (3)

Sea water salinity

Gulf of Mexico Oil seeps 18 (4)

Sulfate reduction coupled with anaerobic methane oxidation

Seawater salinity

Gulf of Mexico Gas seeps 8.6 (4)

Hypersaline condition

DS basin Alluvial sediment 17 � 3.5 (5)

(1) Habicht & Canfield, 1997; (2) Stam et al. (2010); (3) Stam et al. (2011); (4) Aharon & Fu, 2000; (5) this study.
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would increase during bacterial sulfate reduction, the oxy-

gen value would be expected to be concave toward the

equilibrium value. However, both isotopes respond to

changes in the intermediate steps—fluxes and isotope frac-

tionation (Brunner et al., 2005, 2012; Antler et al., 2013).

Therefore, a plot of d18OSO4 vs. d34SSO4 can be useful for

understanding the dynamics of the intracellular reactions

during bacterial sulfate reduction (Brunner et al., 2005,

2012; Antler et al., 2013).

Figure 9 shows a linear correlation between d18OSO4

and d34SSO4 in the DS aquifer (R2 = 0.86). The moderate

slope (0.76) indicates that the sulfur isotopes increase

more rapidly relative to the oxygen isotopes. Figure 9 also

demonstrates the expected isotopic ‘plateau’ for the oxygen

isotope where there is full oxygen isotope equilibrium

between the ambient water and sulfate. Previous studies

found that the d18OSO4 equilibrium value with water is

between 22 and 30& higher than the ambient d18O water

(Fritz et al., 1989; B€ottcher et al., 1998; Turchyn et al.,

2006; Wortmann et al., 2007; Aller et al., 2010; Antler

et al., 2013). According to the d18OH2O of the groundwa-

ter which ranged between -3.3& and 3.9&, the oxygen

isotopic equilibrium would be expected to be +25&–

+35& (Fig. 9). Theoretically, the linear correlation

between d18OSO4 vs. d34SSO4 and the fact that d18OSO4 is

still not at equilibrium suggest that the kinetic isotope

effects control both sulfur and oxygen isotope evolution

during bacterial sulfate reduction. In traditional bacterial

sulfate reduction, lower rats of sulfate reduction with more

re-oxidation of sulfate intermediates lead to an equilibrium

curve with d18OSO4 value of sulfite exchange with water

and oxidation. However, the linear relationship can also be

explained as the tangent of a concaved shape toward equi-

librium (Brunner et al., 2005; Antler et al., 2013), and

therefore, oxygen isotopic equilibration between sulfate

and water cannot be entirely ruled out.

The slope of d18OSO4 vs. d34SSO4 has been related to

the rate of bacterial sulfate reduction (B€ottcher et al.,

1998; Antler et al., 2013). The slope of d18OSO4 vs.

d34SSO4 found in this study, 0.76 (Fig. 9), is close to the

range reported by Aharon & Fu (2000) for sulfate-driven

AOM in the high salinity cold seeps from the Gulf of Mex-

ico (0.3–0.7). In their work, the rate of bacterial sulfate

reduction varied over almost two orders of magnitude

(~5 9 10�4 to ~2 9 10�6 mol cm�3 year�1). Although

these rates were not directly measured but were modeled

from the pore fluid sulfate concentration profile, they are

much higher than those that have been observed in deep-

sea sediments (up to 7 orders of magnitude higher—Tur-

chyn et al., 2006; Wortmann et al., 2007; Antler et al.,

2013). Therefore, even though we were not able to calcu-

late the rate of bacterial sulfate reduction directly in this

study due to the poorly constrained physical properties of

our system, we suggest, based on the slope of d18OSO4 vs.

d34SSO4, that the rate of bacterial sulfate reduction is com-

parable to that observed at gas and oil seeps (Aharon &

Fu, 2000, 2003; Rubin-Blum et al., 2014) or estuaries

(Antler et al., 2013), supporting our link between bacterial

sulfate reduction and AOM. In addition, it has recently

been shown that during the AOM in seeps or estuaries, a

linear correlation between d18OSO4 vs. d34SSO4 is observed

(Antler et al., 2014).

Microbial taxon

Overall, the microbial community supports the geochemi-

cal evidence, suggesting that the aquifer supports coupled

AOM and sulfate reduction. The bacterial community in

particular is indicative of bacterial sulfate reduction and

association with ANME in general (Knittel & Boetius,

2009; Rabus et al., 2013). Desulfohalobiaceae sequences

are commonly observed in libraries sequenced from

hypersaline environments (La Cono et al., 2011), and

while strains of this class have been observed to reduce

sulfate in culture (Jakobsen et al., 2006), none have been

observed to be a part of an ANME-SRB consortium. The

abundant taxon Desulfobacteraceae has been shown to be

associated with ANME previously (Pernthaler et al.,

2008).

Despite the high relative abundance of Euryarchaeota,

Methanomicrobia was the only taxon containing marine

ANME groups to be observed at either site (Fig. 5B,

0.37% EG19, 4.58% EG20). This result is less surprising in

light of previous studies showing hypersaline sites to be

sources of previously unidentified diversity among meth-

ane-oxidizing microbes (Scholten et al., 2005). The Eur-

yarcheota Thermoplasma is a taxon that might also be

involved with methane oxidation at this site. Included in

this group is marine benthic group B or deep-sea archaeal

group. This taxon has been implicated in AOM previously,

Fig. 9 d18OSO4 vs. d34SSO4 sulfate data in the groundwater samples display

a positive relation. The predicted range of equilibrium isotope fractionations

between SO4
2� and H2O are indicated by the pink area (estimated from

Fritz et al., 1989; Brunner et al., 2005; Turchyn et al., 2006; Wortmann

et al., 2007; Aller et al., 2010).

© 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

524 N. AVRAHAMOV et al.



as it is frequently identified in methane-hydrate-bearing

sediments (Inagaki et al., 2006b; Roalkvam et al., 2011).

SUMMARY

The anoxic part of the FSI zone in the DS aquifer was

used to explore sulfur and oxygen isotope systematics of

sulfate in hypersaline groundwater (up to 6300 mM) due

to sulfate-driven AOM. Correlation between d34SSO4 and

sulfate depletion indicated bacterial sulfate reduction. The

anaerobic conditions and the isotope mass balances suggest

that the observed decrease in d13CDIC is mainly a result of

methane oxidation (AOM) through this BSR. The micro-

bial taxon observed support the geochemical evidence. In

particular, the bacterial community is indicative of bacterial

sulfate reduction and association with ANME. The appar-

ent net bacterial sulfate reduction rate has been calculated.

The extent of sulfate removal by reduction is correlated

with the salinity and methane concentrations, suggesting

that the two major factors controlling the variable reduc-

tion in the DS area are the salinity and methane availabil-

ity. According to the Rayleigh equation, the sulfur isotope

fractionation during bacterial sulfate reduction in the FSI

zone is 17 � 3.5&, considerably lower than that found in

the DS in the past (34e = 30&) for bacterial sulfate reduc-

tion that is not associated with AOM. This low value

(17 � 3.5&) may indicate a higher oxidation rate of

methane compared with that of organic matter as sug-

gested in previous reports. In this study, the plot of

d18OSO4 vs. d34SSO4 shows a linear trend without reaching

the equilibrium value between the ambient water and sul-

fate. This could be a result of a kinetic isotope effect,

although the equilibrium effect cannot be entirely ruled

out. In addition, the slope value of 0.76 suggests a high

rate of bacterial sulfate reduction. Improvement of the

parameters controlling oxygen isotope ratios in the future

by defining precisely the oxygen isotope fractionation dur-

ing bacterial sulfate reduction likewise increasing identifica-

tion of methane-oxidizing microbes diversity in hypersaline

environments could improve our understanding of the

AOM reaction in the DS area.
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